Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps.

نویسندگان

  • H X Yang
  • A Hallal
  • D Terrade
  • X Waintal
  • S Roche
  • M Chshiev
چکیده

We report on first-principles calculations of spin-dependent properties in graphene induced by its interaction with a nearby magnetic insulator (europium oxide, EuO). The magnetic proximity effect results in spin polarization of graphene π orbitals by up to 24%, together with a large exchange-splitting band gap of about 36 meV. The position of the Dirac cone is further shown to depend strongly on the graphene-EuO interlayer. These findings point toward the possible engineering of spin gating by the proximity effect at a relatively high temperature, which stands as a hallmark for future all-spin information processing technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional carbon topological insulators superior to graphene

Graphene was the first material predicted to realize a topological insulator (TI), but unfortunately the gap is unobservably small due to carbon's weak spin-orbital coupling (SOC). Based on first-principles calculations, we propose a stable sp-sp(2) hybrid carbon network as a graphene analog whose electronic band structures in proximity of the Fermi level are characterized by Dirac cones. We de...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides

Proximity orbital and spin-orbital effects of graphene on monolayer transition-metal dichalcogenides (TMDCs) are investigated from first-principles. The Dirac band structure of graphene is found to lie within the semiconducting gap of TMDCs for sulfides and selenides, while it merges with the valence band for tellurides. In the former case, the proximity-induced staggered potential gaps and spi...

متن کامل

Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon

Spin-polarized electronic and transport properties of Armchair GraphdiyneNanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations fordouble vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibriumGreen’s function (NEGF) combined with density functional theory (DFT).The results demonstrate that the A-GDYNR with the SV has the lowe...

متن کامل

Large-gap quantum spin Hall insulators in tin films.

The search for large-gap quantum spin Hall (QSH) insulators and effective approaches to tune QSH states is important for both fundamental and practical interests. Based on first-principles calculations we find two-dimensional tin films are QSH insulators with sizable bulk gaps of 0.3 eV, sufficiently large for practical applications at room temperature. These QSH states can be effectively tuned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 4  شماره 

صفحات  -

تاریخ انتشار 2013